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ABSTRACT  

 

This paper will explore the obstacles inherent in 

predicting GNSS-based navigation accuracy, discussing 

each obstacle in turn and attempting to bound navigation 

errors as a function of time.  Depending on your 

definition of accuracy – this topic can be relatively easy 

or terribly difficult.  For this analysis, we will focus on 

major contributors to navigation positioning errors, such 

as Dilution of Precision (DOP), and User Range Error 

(URE) behaviors. 

This paper is born out of the nascent need by 

organizations to plan missions based on future navigation 

accuracy – a need that is not easily met currently.  I will 

look at the behaviors of each error contributor to the 

accuracy prediction problem, and attempt to 

mathematically or statistically bound the error produced 

by each.  Complexities such as the non-Gaussian behavior 

of the errors must be addressed as well.  The predictions 

will take on two forms: extrapolated instantaneous errors 

and statistical errors mapped to specific confidence levels. 

We’ll also show how these bounds can be converted to 

other accuracy parameters using standard methods. 

 

Some of the elements that make up the total navigation 

accuracy picture can be bounded fairly easily, given a few 

modeling parameters.  Others are not so tame and will 

exhibit complex behaviors.  I anticipate the results will 

show large variances in the different predicted error 

bounds and that this in turn will drive future work in the 

area.  I anticipate writing follow on papers discussing the 

specific details of the different error contributors in the 

near future and encourage others to do so as well. 

 

Navigation error prediction is becoming more prevalent 

and as users get more sophisticated, dilution of precision 

predictions are no longer sufficient for their needs.  

Providing a framework to work from, this paper will 

allow users of position error predictions to better 

understand their specific problem.  This work will also 

lead to further research in accuracy prediction, forming a 

foundation from which to grow. 

 

INTRODUCTION  

 

Two subjective terms are used in the title of this paper; 

Long-Term and Accuracy.  Differing individuals or 

groups will have different definitions for both.  I do not 

have a strict definition myself, so I’ll let my examination 

of the data provide some answers. 

Radio-navigation position accuracy consists of several 

error sources, with error budgets well defined in many 

texts. [1][2][3]   Finding a complete theory of navigation 

error prediction will necessarily require that all error 

sources be predictable – to one degree or another.  In 

theory, once the different error sources can be predicted, 

the problem is complete, all that would remain is to 

combine these error predictions in some meaningful 

fashion to determine the entire navigation error problem 

at some future time.  References on the propagation of 

errors are good places to begin that study [10].  Of course 

when theory meets practice, problems inevitably arise.  

Let’s start with a list of the common error sources and see 

where we start to have trouble.  Once we find the trouble, 

let’s see if we can find ways around the issues or 

somehow bound the problem. 

 



NAVIGATION ERROR SOURCES 

This error source list is not meant to be all-inclusive, but 

includes those with the largest effects 

 Dilution of Precision 

 Signal-In-Space Range Error 

o Ephemeris Error 

o Clock Error 

 Atmospheric Error 

o Ionospheric Error 

o Tropospheric Error 

 User Equipment Error 

o Multipath 

o Receiver noise 

 

For this paper, I will not look at the atmospheric 

behaviors.  This is a topic in and of itself [9].  Let’s look 

at each of the remaining errors in turn. 

 

Dilution of Precision 

Many references provide details regarding what dilution 

of precision (DOP) is and how it arises [1] [2] [3].  For 

this paper, I’ll assume the reader is familiar with DOP and 

how it affects navigation accuracy.  For the most part, 

DOP is predictable, since it arises from constellation 

geometry alone.  All that’s required to predict DOP is to 

be able to predict the GPS satellite orbital positions and 

even then no great accuracy is required.   

Note that it is assumed here that there are no obstructions 

to your obtaining the predicted DOP value.  Physical 

obstructions as well as radio frequency obstructions can 

limit your receiver’s ability to track all satellites that 

could otherwise be seen.  This paper’s analysis will 

assume that none of those obstructions are in place and all 

satellites predicted to be tracked are actually tracked. 

Differences in the actual positions of the satellites on the 

order of tens of kilometers lead to DOP differences only 

in the 3
rd

 and 4
th

 decimal place. This is provided of course 

that the almanac propagation is close to the Time of 

Almanac (TOA) [4] when compared to the precise 

ephemeris.  
Here again is a subjective term – close.  Let’s look a little 

closer at DOP values predicted with an almanac 

propagated into the future some number of weeks against 

the actual DOP value for that time calculated from the 

National Geospatial-Intelligence Agency (NGA) precise 

ephemeris.  This analysis will show us how far we can use 

a single almanac, before it starts affecting our accuracy.  

Figure 6.3 in [2] shows that position accuracy is linearly 

dependent on dilution of precision.  The dilution of 

precision error then has a direct affect on position errors.  

Figure 1 shows the position DOP residual error plotted 

against time for 22 weeks of prediction.  Figure 2 is a 

closer look at the first 8 weeks. 
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Figure 1 - PDOP Residuals 22 Weeks 
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Figure 2 - PDOP Residuals 8 weeks 

 
Upon inspection, the first two weeks of DOP values have 

a very small residual error – roughly 0.003 peak-to-peak 

(excluding the few spikes present in this range).  As time 

progresses however the spikes gain control and eventually 

dominate the residual plot.  However, even at 22 weeks 

out, the absolute DOP prediction error is still under 0.6.   

Since the DOP residual error is pretty low, even 22 weeks 

out, let’s see how well the predicted DOP values correlate 

with the actual DOP values.   

 

Figure 3 shows a cross-correlation plot of the predicted, 

almanac DOP values to the actual DOP values.  The 

interesting portions of this plot are the spikes that occur at 

daily intervals.  One would expect the DOP values to be 

correlated at the same time each day (more precisely at 

the 23:59:56 mark) – for at least the first few weeks, and 

this is what we see.  Note though that the correlation 

linearly decreases until at 22 weeks, where there is little 

correlation between the DOP values calculated by the 

almanac prediction and the actual DOP.  The magnitude 

of the DOP value may only change by 0.6 peak-to-peak, 

but the lack or correlation tells us that the actual DOP 



data may have spikes where the predicted data showed 

none. 

 

 
Figure 3 – Predicted PDOP, Actual PDOP Cross 

Correlation 
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Figure 4 - 3 week DOP prediction example 
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Figure 5 - 21 week DOP prediction example 

 

Figures 4 and 5 show examples of the predicted DOP 

compared to the actual DOP.  Prior to the two week 

boundary, the predicted DOP is virtually indistinguishable 

from the actual DOP – the graphs overlay each other. 
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Figure 6 - Variance of Predicted Position DOP 

 

Figure 6 shows the variance of the predicted position 

DOP by week of prediction.  As the prediction time 

increases, the variance of the predicted DOP increases 

linearly.  Another clear marker here is that the variance is 

practically zero for the first two weeks.  The wise reader 

will note here that the almanac can be safely used for two 

weeks or so before the almanac orbit predictions start to 

degrade user accuracy by providing increasingly incorrect 

DOP values.  So, for DOP analysis, we can define Long-

Term as two weeks. 

 

As we’ll see further on in the paper, DOP is the defining 

criteria for predicting GPS accuracy.  While DOP cannot 

give you a precise navigation error in and of itself, the 

extent to which we can predict DOP directly ties to the 

extent we can predict navigation accuracy.  

 
Signal-In-Space Range Error 

The SIS ranging error consists of two primary pieces, 

ephemeris error and clock error.  The ephemeris errors are 

errors between the actual GPS satellite position and the 

satellite position broadcast to receivers.  The clock error is 

similar – it’s the difference between the actual clock 

phase and the clock phase that’s calculated from 

parameters sent to the receiver.  These errors are typically 

a few meters but can be much more, especially in the case 

of the clock.  Ephemeris errors result from unmodeled 

perturbations on the satellite and are reduced to almost 

zero when a new navigation upload is made to the 

satellite.  At this point, the age of data (AOD) is zero and 

the broadcast ephemeris is at its most accurate.  As time 

progresses throughout the day, imperfections in the 

ephemeris prediction slowly appear, leading to larger 

ephemeris errors.   



The clock errors act similarly.  The clock errors arise 

from quantum mechanical fluctuations in the atomic clock 

itself, leading the clock phase to exhibit a random walk 

behavior.  This effect is difficult to predict and over days, 

and over weeks and months would be impossible to 

determine.  

In this analysis, the job of having to predict the ephemeris 

and clock errors is made simpler by the fact that these 

errors are clamped.  The 2nd Space Operations Squadron 

(2SOPs) watches both the ephemeris and clock residuals 

in near real time and ensures that they stay below certain 

thresholds by uploading new navigation data predictions 

to the satellites.  Typical satellites are uploaded once per 

day; some more often (usually the older satellites), some 

less often.  This clamping effect on the SIS errors makes 

predicting long term behavior easier, in that we do not 

need to be able to predict random clock behaviors for 

weeks at a time.  Under nominal conditions, we can 

assume a worst case set of errors for the ephemeris and 

clocks based on an analysis of the long-term trends of the 

data.  To that end, I have analyzed over 800 days of 

ephemeris and clock errors from 2SOPs and looked at the 

absolute maximum ephemeris and clock errors for each 

satellite.  See Figures, 7, 8 and 9.  Indeed, one can see that 

the errors do not run off past certain boundaries. Of 

course, each PRN exhibits a different bound. If 2SOPs did 

not upload the satellites on a regular basis, these plots 

would look markedly different.  It should be noted that 

data for all satellite outages was removed for this analysis.  
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Figure 7 – Sample of Maximum Clock Error by Day 
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Figure 8 – Sample of Maximum Ephemeris Error by 

Day 
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Figure 9 – Sample of Maximum Global User Range 

Error by Day 

 

The averaged maximum values by satellite [5] are shown 

in Figures 10, 11 and 12.  These plots show the mean 

value one could use in a prediction scheme for long-term 

navigation errors by satellite.  For example, when 

predicting the SISURE component of the navigation error 

using PRN 19, one needn’t allow the predicted error to 

raise much above 0.75 meters.  The data here has shown 

that the maximum global URE error for PRN 19 has 

consistently been in this range. 

 

This data is helpful in the long-term prediction regime; 

prediction times longer than a day. In fact, since our 

certainty of the general clock phase state decreases as 

time increases (assuming no clamping), this maximum 

error information becomes more valuable as time 

increases. In the next section I’ll discuss extrapolated 

predictions in the range from 1 minute to 12 hours to see 

how to better describe navigation errors in this regime. 
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Figure 10 – Averaged Maximum Ephemeris Error 
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Figure 11 – Averaged Maximum Clock Error 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

0.5

1

1.5

2

2.5

3

3.5

4

PRN

M
a

x
im

u
m

 g
lo

b
a
l 

u
s
e

r 
ra

n
g

e
 e

rr
o

r 
a
v

e
ra

g
e

 (
m

e
te

rs
)

Maximum global user range error averaged over ~800 days

 
Figure 12 - Averaged Maximum Global User Range 

Error 

User Equipment Errors 

The User Equipment Errors (UEEs) are the least 

predictable of the error sources in our problem.  Receiver 

noise is generated by the receiver tracking loops as they 

track code, phase and frequency in a variety of dynamic, 

signal-rich environments. Multipath error results from the 

receiver receiving multiple signals from the same 

spacecraft – along different reflected and refracted paths. 

The receiver can use only those signals within a specific 

time of reception rendering the other signals as noise the 

receiver must endure. 

Receiver noise error is dependent on many factors that 

change as a function of time; temperature, g-loading, 

antenna positioning, etc.  Multipath error is dependent 

upon knowing the exact position of reflective surfaces 

surrounding the receiver antenna and the orientation of 

the antenna itself.  Determining all of these parameters to 

produce a viable navigation error prediction is a 

significant task and presents many challenges – though 

good work is being done in this area [11].  One way we 

may attack this problem currently is to take a lesson from 

the physicists of the 19
th

 century.  By then, the laws of 

classical mechanics could aptly describe all the motions 

of the particles of a gas in a box, but the sheer number of 

gas particles precluded the scientists of the time from 

conducting such a calculation.  In their case, they resorted 

to using the methods of the Statistical Mechanics branch 

of the discipline.  With this, they had to be content with 

understanding the statistical behaviors of the gas, rather 

than the explicit motion of each gas particle.  In our case, 

we can do something similar.  Instead of trying to 

understand each multipath reflection, we can create 

ensemble behaviors for different categories of 

environments and use root-mean-square (RMS) values 

derived from these environment types as an additional 

navigation error.  This approach could lead to more 

efficient calculation schemes than current ray tracing 

algorithms – though this method will not be able to 

provide us with instantaneous errors, only statistical 

behaviors.  The field of noise and multipath prediction is 

nascent and difficult.  For this paper, I’ll suffice to leave it 

at being able to add an error value for either noise or 

multipath or both to the navigation error prediction.  

Determining ensemble behaviors for different classes of 

environments is beyond the scope of this paper, but a 

good topic for a follow-on paper [9]. 

 

PREDICTION METHODS 

We’ve looked at the data necessary to perform the 

predictions, now we need to understand how to predict 

navigation errors and within which time regimes the 

answers are viable.  It’s important to understand how best 

to predict errors at different times in the future.  One 

method may lead to more accurate results in one regime, 

and another method may work better at a different time.  

To better understand the time regimes, let’s look at the 

types of data available to us from which can make 

predictions.  The analysis of this data should naturally 

point us to times when it should be used. 

 

 

 



Prediction Input Data  

There are three types of data most likely to be available 

for predictions:  

1) Information about the navigation errors from the 

previous time step, either from some differential 

network, or by some other means 

2) Statistical information on the errors from 

previous days 

3) The maximum error information from the 

previous section of this paper 

 

These three choices provide different ways to predict the 

navigation error at a given time.  If all types of data are 

available, it may be possible to switch prediction 

techniques based on the time of prediction.  Let’s look at 

each of these data types in turn. 

 

Performance Assessment File Data (option 1) 

I’m using the term performance assessment file (PAF) 

because the GPS Operations Center (GPSOC) produces 

PAF files containing ephemeris and clock errors for each 

satellite in near-real time.  Using this type of standardized 

data, one can produce the instantaneous navigation errors 

for a given time.  The GPSOC performs these calculations 

daily.  To understand how this data can be used for 

predictions, we must come up with some type of 

extrapolation scheme for the ephemeris and clock errors 

contained in the file.  Fortunately, the ephemeris and 

clock error rates are also included in the PAF file.  Using 

the following simple PAF extrapolation algorithm, I’ll 

propagate the ephemeris and clock error states into the 

future, and then calculate the user range error and 

navigation accuracy based on these propagated errors.  

The notation follows [6]. 

th
dt

)0(Ed
)0(E)h(E

ˆ N
NN 




 

Here, )h(E
ˆ

N


 is the predicted ephemeris error, from time 

N predicted h steps into the future and t is the time step 

of the data.  A similar equation holds for the clock data.   

 

Once we have the predicted ephemeris errors and clock 

errors, we need to create user range errors.  The user 

range errors are created by dotting the predicted 

ephemeris error vector into the line of sight vector from 

the receiver to the GPS satellite.  This dotted quantity 

then has the predicted clock error subtracted from it.  
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Figure 13 – User Range Error Residuals 

 
Figure 13 shows how the user range error prediction 

residuals behave as the prediction time h increases from 0 

to 12 hours.  Within the first hour, the URE residuals do 

not vary by more than ±1 meter.  These errors grow as the 

prediction time increases.  To see how these predicted 

UREs affect the predicted navigation performance, see 

Figures 14 and 15.   
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Figure 14 - Horizontal Error Residual 

 

For roughly the first 6 hours (360 minutes), the navigation 

error residuals are within a few meters.  This single day-

single site analysis shows at a rudimentary level, how the 

PAF extrapolation method can be used for navigation 

accuracy prediction.  However, a more detailed analysis is 

needed here to understand how regional effects and daily 

effects average out over the long term.  It does appear 

though that even with a detailed analysis we are not going 

to get much better than 6-12 hours of predictability using 

this method and expect to maintain an accuracy level 

expected by the majority of GPS users.   
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Figure 15 - Vertical Error Residual 

 

Prediction Support File Data (option 2) 

The GPSOC also produces statistical data for each GPS 

satellite’s performance.  In particular the Prediction 

Support File (PSF) contains the 1-sigma errors for the 

radial, along-track and cross-track components, as well as 

for the global user range error and clock error over the 

last seven days.  The global user range error is defined as: 

 

  ClockR96.1CA02.0R96.0ClockURE 2222

G   

Equation 1 - Global URE 

 

Here, UREG is the 7-day 1-sigma global user range error, 

Clock is the 7-day 1-sigma clock error, R is the 7-day 

1-sigma radial error, A is the 7-day 1-sigma along-track 

error and C  is the 7-day 1-sigma cross-track error.  The 

global user range error equation derives from integrating 

the user range error over the entire face of the Earth. 

 

This statistical data can be used to make statistical 

predictions of navigation accuracy.  We will not be able 

to get instantaneous errors as we did with extrapolated 

PAF data, but we can predict navigation errors with a 

specified confidence level. 

Using the constant 1-sigma value for the UREG for each 

satellite, we can calculate the 1-sigma value for our 

navigation error into the future.  If we predict the vertical 

error or the time error, our prediction will have a 

confidence level of 68.27% since both time and vertical 

errors are 1-dimensional quantities.  If however, we 

predict horizontal error, a 2-dimensional quantity; our 1-

sigma prediction will have a confidence level of 39.35%.  

The predicted position error, a 3-dimensional value, will 

have a 1-sigma confidence level of 19.9%.  To be able to 

measure the effectiveness of these predictions, we need to 

convert these 1-sigma error predictions to some standard 

confidence interval.  Typically, the confidence levels used 

are 50% and 95%.  Standard conversion multipliers exist 

[7] [12], however these standard multipliers are derived 

from normal, Gaussian processes.  Unfortunately, GPS 

errors are not well represented by Gaussian statistics in 

the long term.  Referring to Figure 16, I’ve created a 

histogram of roughly 20,000 position errors, and then 

plotted several best-fit distributions against the position 

error data.  It’s obvious that the Normal distribution is not 

well-suited; however, the usually quoted Rayleigh 

distribution is not the best fit either.  The Weibull fit is 

roughly equivalent to the Rayleigh fit (the Weibull 

distribution is a generalization of the Rayleigh 

distribution [8]) but the Gamma fit seems to be the best. 
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Figure 16 - Position Error Distribution 

 

Table 1 lists the best fit parameters for these position error 

data distributions. 

 

Distribution 1
st
 parameter 2

nd
 parameter 

Rayleigh 1.18535 N/A 

Weibull 1.64471 1.85666 

Gamma 3.14733 0.462432 

Normal 1.45543 0.831808 

Table 1 - Position Error Distribution Parameters 

  

Rather than deriving the multipliers using an analytic 

distribution [9], I’ll use the PAF data provided by the 

GPSOC to derive the multipliers empirically. For each of 

the days analyzed, I’ll calculate the navigation error at 1 

minute time intervals, then sort the position, horizontal, 

vertical and time accuracy data and find the 50
th

 and 95
th

 

percentile errors. 

Dividing these errors by the root-mean-square error for 

the day provides an estimate of the one, two and three 

dimensional multipliers for that site for the day.  To get an 

accurate picture of the global distribution of the 

multipliers, I’ll repeat this analysis over the globe using a 

5 degree grid.  The values for each grid site are then 

averaged on a daily basis.  The results of this analysis are 

plotted in Figure 17.  It’s interesting to see that over the 

600+ days of analysis, there appear to be no trending 

behaviors in the multiplier data, though daily variations 

are quite apparent.  Tables 2 and 3 compare the 

empirically derived multiplier values by dimension and 



confidence percentage to the theoretical (Gaussian-based) 

values. 
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Figure 17 - Empirical Confidence Interval Multipliers 

 

Dimensions Empirical Value / 

Standard Deviation 

Theoretical 

Value 

1 – Vertical 0.6323/0.0223 0.6745 

1 – Time 0.6084/0.0220 0.6745 

2 – Horizontal 0.7824/0.0236 0.8326 

3 – Position 0.7551/0.0236 0.8880 

Table 2 - 50% Confidence Multiplier Values 

 
Dimensions Empirical Value / 

Standard Deviation 

Theoretical 

Value 

1 – Vertical 2.0096/0.0316 1.960 

1 – Time 2.0230/0.0281 1.960 

2 – Horizontal 1.8109/0.0431 1.731 

3 – Position 1.8433/0.0380 1.614 

Table 3 - 95% Confidence Multiplier Values 
 

The variability of the empirically derived multiplier 

values as seen in figure 17 suggest that on a daily basis, 

the confidence values will not be identically 95% and 

50%, but will vary slightly.  For example, see Figure 18 

where I compare actual position errors to 50% and 95% 

confidence predicted position errors. 

 

For this particular day, the percent of actual errors outside 

of the 95% confidence level is 6.8% - not the 5.0% we 

would expect.  Similarly, for the 50% confidence level 

data, this particular day saw 51.8% of the actual errors 

above the predicted errors.   

The next question is then, how long can I use a single 7-

day PSF file to represent navigation errors accurately, 

within a given confidence level?  To decide this, we must 

take into account the variability of the empirical 

multipliers we use to arrive at a given confidence level – 

and look for excursions beyond this inherent variability.   
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Figure 18 - Actual versus Statistically Predicted 

Errors 

 

Figure 19 shows one way to visualize these excursions.  A 

statistical prediction of GPS accuracy was made each day 

for 155 days past the prediction epoch.  Each day, the 

actual navigation accuracy at a specific site was 

calculated, and then the predicted accuracy was calculated 

using the 7-day PSF file from the prediction epoch only.  

The 7-day PSF file was not updated as the prediction day 

advanced.  This figure shows the percent of actual 

navigation errors that are greater than the 95% confidence 

level predicted navigation error.  I’m using the term 

excursions for this quantity.  This is the interesting 

behavior we are interested in – we want to know the 

actual navigation errors that are greater than our 

prediction and, hopefully to be able to minimize them. 
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Figure 19 - Confidence level prediction stability using 

last 7 day statistics  

 
Figure 19 has a few interesting points: 

a) There is no apparent decrease in confidence in 

this graph as the prediction time increases.  This 

would be signaled by an increasing trend in the 

data from left to right. 



b) There is much variability in the 95% confidence 

predictions.  At a 95% confidence level, based 

on the variability in the multiplier calculations of 

Figure 17, we’d expect a smaller variation of the 

actual percentage about the 5% line.   Instead, we 

see a larger variation. 

 

The preliminary conclusion to draw from this data is that 

there appears to be no time dependence on the use of the 

7-day PSF file for prediction purposes.  When using the 

7-day PSF file for predicting navigation accuracy, and 

then converting to a specific confidence level, one must 

not expect that exact confidence level to be strictly 

upheld, even in the shortest prediction times.  The 

inherent variability of GPS statistics precludes us from 

being able to precisely determine statistical predictions 

with great confidence. Standard error theory procedures 

do not appear to hold well when applied to GPS error 

measurements and further study on this topic is 

warranted. [9]  

 

Figure 20 shows that 60% of the actual error excursions 

are within the 5% boundary.  In fact, 90% of the 

excursions are below 10.25% (89.75% confidence).  With 

no time-dependent behavior to rely on, using a given 

multiplier to predict accuracy with a certain confidence is 

not for the faint of heart. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percent of error excursion

C
u

m
u

la
ti

v
e
 p

ro
b

a
b

il
it

y

Cumulative probability of error excursions
Last 7-day statistics

 
Figure 20 - Cumulative probability 95% error 

excursions using last 7 day error statistics 

 

This analysis suggests that we look further into the 

generation of the multipliers used to satisfy our 

confidence interval analysis criteria.  Is there a spread of 

the multipliers as we predict further in time?  Is there a 

better way to derive the multipliers?  We can actually find 

the multiplier that will satisfy our 95% confidence (or any 

confidence level for that matter) by iterating over 

different multipliers and counting the excursions for each.  

To do this analysis, I iterated over multiplier values from 

0 to 2.5, for each day in my 155 day sample (Jan 1, 2007 

to Jun 4, 2007).  The results are plotted in figure 21. 
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Figure 21 – Multiplier analysis for actual error 

excursions using last 7 day error statistics  

 

This figure shows a familiar looking curve [9], with 

several lines.  I’ve highlighted the lines for the multipliers 

for the number of days averaged into the prediction. 

This graph shows that after the first few days of 

prediction, the multipliers settle down to a fairly small 

range.  The horizontal blue line signifies the 50% 

excursion criteria (50% confidence) and the horizontal red 

line signifies the 5% excursion criteria (95% confidence)  

I’ve also highlighted the width of the multiplier values for 

these two confidence levels.  This shows that the 

multiplier values are: 

1) Different for this regime than those obtained 

using the empirical method above 

2) Have a fairly large spread for 95% confidence. 

 

The shape of the curve shows us why the 95% spread is 

so large – the multiplier lines are almost tangential to the 

5% line. Reference [12] has a good explanation for this.  

The multipliers have a spread of 0.75 to 0.90 for the 50% 

confidence level and 1.68 to 2.08 for the 95% confidence 

level.  It appears that averaging the global multipliers 

derived empirically then using that single mean multiplier 

value may not be the best method to use. 

 

Maximum Error Data (option 3) 

The maximum errors derived in the Signal-In-Space 

section above could also be used to create statistical 

predictions of navigation accuracy.  Instead of the global 

URE derived from the last 7 days of data for each 

satellite, I’ll now use the maximum global URE data as 

the 1-sigma error in the PSF prediction scheme.  To create 

the maximum global URE, I’ll use the global URE 

equation (Equation 1), and use the maximum radial, 

along-track, cross-track and clock error statistics.  Then, 

proceeding as above, I’ll predict 155 days out and 

determine the 95% excursions as a function of the 

multiplier value required to meet that criteria.  Figure 22 

shows a plot identical to Figure 21, but using the 

maximum error statistics instead.  Notice the difference in 



the width of the spread for the 95% confidence multipliers 

(along the red 5% line).  This spread is much less than 

with the 7-day PSF file prediction.  These multipliers 

have a spread of 0.55 to 0.68 for the 50% confidence level 

and 1.2 to 1.43 for the 95% confidence level.   
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Figure 22 - Multiplier analysis for actual error 

excursions using maximum error statistics 

 

To see how the excursions behaved, Figure 23 was 

created.  This figure looks quite similar to Figure 19, in 

fact it’s difficult to glean any new information by 

studying these two graphs alone.  
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Figure 23 - Confidence level prediction stability using 

maximum error statistics 

 
Looking now to see if this new maximum error approach 

is any better or worse, I created Figure 24, the cumulative 

probability plot, similar to Figure 20.  With this new 

prediction scheme, I still have 60% of my errors within 

the 95% confidence level, and 90% of my errors are now 

within 89% confidence.  The results here are not 

statistically significant.  
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Figure 24 - Cumulative probability of actual error 

excursions using maximum error statistics 

  

One final piece of analysis we can perform on these two 

types of predictions data is to scatter plot them.  We’ll 

look for any deviations that may show us one type of 

prediction method is better than another.  

In Figure 25, the black diagonal line is the y = x line, the 

7-Day error excursions are plotted along the x axis and 

the maximum error excursions are plotted along the y 

axis.  Each blue dot represents the error excursions for 

one day of prediction, with the first 14 days of predictions 

highlighted in orange.  I determined a least squares fit to 

the 155 days of data and found the slope of the best-fit 

line equal to one.  Essentially, the y = x line is the best fit 

line in the graph.  Thus, there appears to be no significant 

difference between these prediction methods when used 

to try to reduce the number of excursions beyond the 95% 

confidence level. 
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Figure 25 - Maximum Error vs. 7-Day prediction 

methods 

 

We know from the previous section on DOP prediction, 

that we can successfully predict DOP two weeks with an 

almanac.  With this in mind, I highlighted the first 14 

days of statistical prediction in Figure 25, wondering if 

there was some pattern that these excursions took to lie 



about the best fit line.  As is apparent from the graph, the 

pattern of the first 14 days is not different from that of the 

whole 155 day dataset.  In fact, though not plotted, each 

successive month of predictions was analyzed, and found 

to have this same general behavior, leading to a final 

conclusion – there is no time dependence to statistical 

error excursions when predicting GPS accuracy. 

 

Time Regimes 

Now that we’ve explored the prediction behaviors in 

different data regimes, how can we make use of this 

information when we need to predict in a particular time 

regime?  Should I use PAF data and extrapolate to get my 

navigation errors at some future time?  Should I use the 

statistical prediction method?  The following are my 

recommendations based on this analysis.  My 

recommendations are presented with the understanding 

that as further analysis is completed, these prediction 

recommendations may change. 

 

If one has access to PAF type data, it’s best to use that as 

far as possible.  This is because the PAF type data will 

allow you to predict instantaneous, signed errors for times 

in the future, providing a specific error vector.  The data 

analyzed above shows that PAF based extrapolations can 

be used for roughly 6 hours with a meter or two of error. 

After six hours the navigation errors begin to grow and 

may no longer be acceptable.  The choice of how long 

you use the PAF extrapolation technique is directly 

related to how much error you can stand.  In this type of 

prediction, I would denote long-term as 6 hours. 

 

If only statistical data is available, use that as a second 

choice.  While statistical error predictions can be made for 

any time in the future, the nature of the 1-Sigma 

prediction technique does not allow for signed errors.  

Thus only an error ellipsoid can be generated from this 

type of data, instead of an error vector.   

For the statistical predictions, I would use these for what 

ever time span you have.  Since there appears to be no 

time-dependence on the length of prediction time with 

this type of data, I can recommend its use for at least 

several months in advance.  The tricky part of this 

prediction is using the correct multiplier to achieve the 

level of confidence you want.  Using Figures 21 and 22 as 

guides, select the multiplier value appropriate for your 

desired confidence level and type of PSF data, then apply 

to your predicted error values.  For this type of 

navigation, I’ll define long-term as 5+ months.   

 

It’s apparent from Figures 21 and 22, that the larger the 

multiplier value used will result in fewer excursions 

above my desired confidence level.  We could use a 

multiplier of 10.0 say to make all the excursions in figure 

23 lie within the 95% confidence level.  The problem then 

is that my predicted errors are so large that I don’t really 

have insight into my problem.  Judgment is required here 

and hopefully the analysis presented here will allow the 

user to make better informed decisions. 

COMPLETING THE PREDICTION PICTURE 

 
Most of the analysis in the paper has focused on Dilution 

of Precision and Signal-In-Space errors and their 

prediction, either extrapolated or statistical.  These errors 

are always present in the GPS error budget and warrant 

the type of analysis seen in this paper.  The other errors in 

the GPS error budget are also deserving of analysis and 

must be included to complete the prediction picture [9].  I 

have purposely not analyzed atmospheric errors and have 

only touched on how the multipath and receiver errors can 

be modeled.  Standard error propagation models [7] can 

be used to add differing error sources into a single 

combined error prediction statistic.  These methods 

though can only be used to provide statistical error 

predictions. 

 

SUMMARY 

In this paper, I have analyzed the techniques necessary to 

predict navigation errors using data available to the 

typical GPS user.  I’ve shown that almanacs can be used 

to predict dilution of precision values for two weeks with 

little difference in PDOP values.  I then went on to show 

how the signal in space user range error values are 

clamped by the fact that the 2
nd

 Space Operations 

Squadron uploads the GPS satellites on a regular basis.  

Following that I investigated an extrapolation technique 

useful when predicting for up to six hours in the future.  

Statistical prediction techniques were then addressed, first 

by considering a 7-day statistical strategy then by using 

the maximum error method.  Both methods are very 

sensitive to the multiplier values needed to assess the 

predicted errors at a specific confidence level. 

 

This analysis was performed and is applicable to only 

those errors that seen on a routine basis in the GPS 

system.  The techniques discussed here will not hold 

when there are clock jumps, or other perturbing forces 

that cause the navigation errors to be significantly larger 

than normal.  For a clearer understanding of these modes, 

see [10]. 

 

Several topics have been raised that are good topics for 

follow on papers, including: 

 Determining the correct distribution for the GPS 

errors and using that to derive theoretical 

multipliers. 

 Develop a standard theory for GPS 

measurements, along the lines of [7] 

 The curve presented in figures 21 and 22 look 

like normal distributions – how do these arise? 

 Can PAF-based URE extrapolations be clamped 

by the maximum errors derived here?  What do 

the 1-12 hour predictions look like then? 



 Develop multipath and atmospheric error 

prediction models and fit them into this 

prediction strategy. 
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